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Abstract

Only a few studies researched the possibility to use low budget UAV derived aerial RGB imagery

for open source crown segmentation processes in R-Studio.  This study aims to test  established

crown segmentation algorithms and corresponding tree finding algorithms on RGB imagery derived

canopy height models in comparison to LiDAR-derived canopy height models, as well as a possible

use of a RGB digital surface model instead of a canopy height model. A direct comparison between

produced  canopy  height  models,  detection  of  tree  positions,  tree  heights  and  crown  shapes  is

conducted. The researches show that a RGB imagery derived canopy height model is suitable for

crown segmentations while the use of a digital surface model is only useful to detect tree positions.

Within  the  compared  algorithms  two  perform  well  and  one  leads  to  worse  results,  especially

concerning with the crown shapes. It is concluded that low budget RGB imagery can be used for

crown  segmentation  processes  with  selected  algorithms  and  produces  reliable  results  without

risking too much accuracy loss compared to LiDAR findings.  
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Introduction

The  use  of  Airborne  Laser  Scanning  (ALS),  also  referred  to  as  Light  Detection  and  Ranging

(LiDAR), is an established monitoring method to acquire three-dimensional forest canopy structures

(Wulder  et  al.,  2008;  Kaartinen  et  al.,  2012). LiDAR-derived  point  clouds  are  used  to  obtain

information  regarding  forest  inventories  such  as  count  of  tree,  tree  height,  crown  shape  and

diameter,  as  well  as  allometry  derived  parameters  like  diameter  at  breast  height  (DBH)  and

aboveground biomass (AGB)  (Jucker  et al.,  2017; Mohan  et al.,  2017). In order to extract this

information from the point cloud, two different methods were tested in the past decades, one using

the  point  cloud  directly  and  one  using  a  point  cloud  derived  canopy  height  model  (CHM)

(Jakubowski et al., 2013). In this study, the latter method was chosen because it is of higher interest

to compare directly within one approach and not between two approaches. Additionally, a trend

study by (Zhen et al., 2016a) ascertained that 66.2% of the examined studies used a CHM approach.

In order to generate forest inventory information from LiDAR-derived CHMs many algorithms are

established, whereby the application of a local maxima detection algorithm on a LiDAR-derived

CHM is an established workflow (Koch et al., 2006; Zhen, Quackenbush and Zhang, 2016; Mohan

et al., 2017).

Although LiDAR is well established and produces satisfactory results there is an increasing interest

in the use of an unmanned aerial vehicle (UAV) to produce high-resolution imagery in order to

generate information analogous to LiDAR data  (White  et al., 2013). For the processing of large

amounts  of  high-resolution  imaging  data  so-called  structure-from-motion  (SfM)  techniques  are

used.  In  doing so, 3D point  clouds are  generated through the matching of features  in  multiple

images  with  the  help  of  corresponding  software,  in  this  case  namely  PhotoScan  from Agisoft

(Mohan et al., 2017). This common method is allocated in the photogrammetry, which is a group of

remote sensing methods applied to photographies. 

The  interest  in  the  use  of  imagery  for  acquiring  accurate  individual  tree  information  can  be

attributed  to  many needs,  such as  reducing the  operational  costs,  gaining  a  higher  spatial  and

temporal resolution, being independent of cloud cover and a safer work environment (White et al.,

2013). In this study, the cost factor is of special interest. Therefore this thesis focuses on the use of

RGB imagery and open source software.

With reference to their  user comfort and reliability three crown segmentation algorithms (CSAs)

and two tree finding algorithms (TFAs) were selected for  this  study. Their  functioning will  be

explained later  on. All  of them are parts  of established R-packages and therefore a free to use
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software (R Core Team, 2018). Two of them based on studies from recent years  (Dalponte et al.,

2015; Silva et al., 2016) and one bases on a study from Meyer and Beucher from 1990 (Meyer and

Beucher, 1990)

Only a  few studies  already tested the possibility  of  RGB imagery derived crown segmentation

(Guerra-Hernández et al., 2016; Mohan et al., 2017). One study comparable to this thesis is written

by Mohan et al from 2017. They also used the implementation of the local maximum algorithm

from Silva et al., 2016 within the rLiDAR package in R for individual tree identification on a UAV

derived CHM. The achieved results depicted an acceptable accordance of individual tree detection

from UAV derived CHMs in an open canopy forest (Mohan et al., 2017).

The possibility of satisfying results for information on forest inventory parameters through UAV

derived  RGB imagery  seems  to  be  given,  referring  to  the  available  findings  of  accomplished

examinations. Referring to the results of Mohan et al 2017, the question arises as to whether the use

of another algorithm leads to similarly good, perhaps even better, results. Since LiDAR so far is the

established tool, this study compares the results, derived from RGB Imagery CHMs with results

from LiDAR data,  in  order  to  answer the  question if  low budget  UAV derived RGB Imagery,

processed with operationally  available  algorithms,  can achieve results  which are comparable to

LiDAR results. 

Despite mentioned advantages, UAV imagery derived point clouds have one main disadvantage,

namely the lack of  ground area detection.  Thus the creation of  a reliable  digital  terrain model

(DTM) in order to generate a CHM is of special interest and difficulty. Although these difficulties

exist this study will try to use UAV and LiDAR point clouds in order to produce similar CHMs. In

those  cases  where  it  is  not  possible  to  generate  a  functional  DTM,  it  could  be  useful  to  get

information regarding the number of trees and crown metrics by solely using a digital surface model

(DSM). The possibility to do so shall be reviewed.

In summary, the aim of this study is to check whether or not a) RGB imagery derived point clouds

are  able  to  produce  suitable  CHMs  and  DSMs  for  crown  segmentation  algorithms  (CSA);  b)

selected CSAs generate reliable results when used on RGB imagery derived CHMs/DSMs and how

well they perform; c) a DSM approach is able to get reliable information about tree counts and

crown shapes.

Methods

Study area

The two study sites are located in a mixed forest  close to the village Caldern belonging to the

district Marburg-Biedenkopf in Hessen, central Germany. They are located at 300 to 360 meters

above sea level. To get various research conditions an orthomosaic (see chapter: Point clouds) of the
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RGB images was used to select the sites empirically in terms of species composition. In order to

check the capability in detecting deciduous site one only consists of those. To research the effects of

different tree categories (deciduous and coniferous) and corresponding tree height differences, site

two contains deciduous and coniferous by little visible ground area. Due to a lack of appropriate

area within the point cloud, site one and two have the upper left (site 1) and the bottom right (site 2)

corner  in  common.  To ensure as much as  possible  comparability  all  sites  are  of the same size

(approx. 55x55m). 
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Data 

Point clouds

Airborne laser scanning (ALS) is increasingly accredited for mapping forest inventories (Coomes et

al., 2017). The LiDAR point cloud used in this study is a product provided by an administration on

state level, the “Hessische Verwaltung für Bodenmanagement und Geoinformation” (HVBG). The

point cloud is generated with a combination of three systems: A GNSS-receiver (e.g. NAVSTAR-

GPS  =  NavigationSystem  with  Timing  and  Ranging  -  GlobalPositioning  System)  marks  the

punctual position of the airplane, an inertial system (INS = Inertial NavigationSystem) determines

the attitude (vertical angle along and across the flight line, horizontal angle) and a laser scanner
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sends beams in a predefined angle to the ground and measures the distance via the return time. The

accuracy per point is approx. 15 cm in height and 30 cm in position (HVBG, 2018). The data was

recorded in winter 2009/2010. Due to the fact that no exact date is available no further information

regarding the leaf conditions are known. Since a study of Brandtberg et al from 2003 showed that it

is possible to get crown information even from leaf-off trees no irresponsible negative effects are

expected. The used RGB images were shot with the 16 MP (rolling shutter) RGB camera of a parrot

sequoia at  the end of August 2017. The used camera is no low budget product because it  is a

multispectral camera, but it could be switched with any comparable low budget RGB camera. An

autonomous flight plan was generated with the help of the R-package uavRmp, a package designed

for autonomous UAV mission planning for low budget drones (Reudenbach, 2018c). The flight plan

captured an area of  approx.  195000 square meter  with an overlap of  80%. The resulting RGB

photos were post-processed with the Agisoft software PhotoScan resulting in the used 3D point

cloud and an orthoimage of the scene (Agisoft PhotoScan Professional (Version 1.3.5)).

CHM and DSM creation

There are two ways to use a 3D point cloud in tree segmentation processes. One uses the point

cloud directly and the other one generates a point cloud derived raster image. In this study, the latter

was chosen because it is of higher interest to compare directly within one approach and not between

two approaches, but not because one of them is more suitable. In addition, a trend study ascertained

that 66.2% of the examined studies used a CHM approach (Li et al., 2012; Zhen, Quackenbush et

al.,  2016).  Various  studies  in  the  past  used  LiDAR-derived  CHMs  for  crown  segmentation

processes  successfully  (Silva  et  al.,  2014,  2016;  Dalponte  and Coomes,  2016) or  multispectral

imagery  (Brandtberg and Walter, 1998). Few cases used RGB imagery  (Guerra-Hernández  et al.,

2016; Mohan et al., 2017). Most of them unite in not explaining their creation process transparently.

Therefore, the instructions by Jean-Romain Roussel and Martin Isenburg, which are based on the pit

free CHM algorithm by Anahita Khosravipour and the corresponding software (LasTools, R base),

were  used  to  create  a  LiDAR-based  CHM  (Isenburg,  2014;  Roussel,  2017;  Roussel,  2018;

Khosravipour  et  al.,  2013).  The  three  staged  algorithm  basically  categorises ground  points  to

normalise the point cloud, creates a number of DSMs on different height steps which are finally

stacked to  a  CHM containing only  the highest  points  of  the  stack on pixel  level.  A  0.5 meter

resolution was chosen to fit the position accuracy of the point cloud and match the suggestion of a

comparable  study  (Dalponte  et  al.,  2015).  Assuming  that  the  given  recommendations  of  the

instruction produce sufficient results the instruction parameters were maintained (Roussel, 2018).

Afterwards, the resulting CHM was median filtered by a 3x3 pixel window to avoid outliers which

could lead to misinterpretations by the crown segmentation algorithms.
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To create  the  RGB imagery  derived  DSMs the  R-package  uavRst  was  used  with  a  resolution

parameter of 0.5 meters to fit the LiDAR-derived CHM (Reudenbach, 2018b; Reudenbach, 2018a).

Due to the fact that imagery based point clouds only consist of surface points, it is of particular

importance to either have sufficient clearings or treeless or rather completely unvegetated areas in

order to create a usable DTM. To use as many reliable ground contacts as possible the uavRst DTM

creation algorithm was adapted. Firstly the algorithm browses the RGB imagery derived point cloud

and constructs a spatial points map based on local minima in different window sizes. Secondly, it

uses each point of the mentioned point map to search points in a point map of the next lower

resolution. The search window is a defined square buffer around points of the first map. Points

which do not exceed a variable maximum height difference are selected. Step two is repeated on the

points selected in the previous run until no smaller resolution is available. The result is a spatial

point map containing only those points which are most likely ground points located relatively close

to their original position. Finally, those points are spline interpolated on a selected resolution (Fig.

3). The CHM creation is basically a subtraction of the DTM from the DSM which is cleaned of

negative values. Corresponding to the LiDAR CHM a 3x3 pixel median filter was applied.
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CSAs and TFAs

As already mentioned, in the past decades many CHM based crown segmentation algorithms were

tested and established (Silva et al., 2014, 2016; Dalponte and Coomes, 2016). To identify suitable

crown segmentation algorithms studies were sifted and were selected regarding their  reliability,

degree  of  establishment,  operability  and  if  they  are  free  to  use.  Two of  three  of  the  selected

algorithms use a tree position raster map as input and therefore offer a matching TFA.

The  first  pair  of  CSA and  TFA is  implemented  in  the  ForestTools  package  in  R.  The  latter

implements a variable window filter algorithm and the crown segmentation implements a watershed

algorithm (Meyer and Beucher, 1990; Popescu and Wynne, 2004).

The second algorithm is an adaption of an algorithm invented by Hyppaä et al. 2001 by Michele

Dalponte and is implemented in the itcSegment package Dalponte, 2018; (Dalponte et al., 2015). It

is  the  only  selected  algorithm  which  uses  a  tree-finding  algorithm  internally.  As  the  package

explanation says,  “The ITC delineation approach finds local  maxima within a rasterized CHM,

designates these as treetops and then uses a decision tree method to grow individual crowns around

the  local  maxima"  (Dalponte,  2018,  p.  5).  The  Hyppaä  algorithm  proofed  its  reliability  in  a

benchmark study comparing delineation methods (Eysn et al., 2015).

Another well-established algorithm pair is an algorithm by Carlos Silva which is integrated into his

own package rLiDAR (Silva, 2018). The TFA uses a local maxima filter with a fixed window size.

The CSA uses a centroidal voronoi tessellation approach (Aurenhammer, 1991) to split predefined

buffers around all found trees and clips the resulting area from the CHM by excluding pixels below

a percentage threshold of the tree height (Silva et al., 2016). 

Due to the lack of field-based references, it was tried to estimate the number of trees in each site

visually by examining the orthoimage (Fig. 2). Referring to the thus obtained count of trees, the

LiDAR processes were minimally adjusted and used as references for the comparison. To offer a

comparability between LiDAR and RGB based results as few as possible parameters were changed

from the  predefined  algorithm settings  in  all  cases.  The  most  important  modification  was  the

adjustment  of  the  search  window  size  because  it  is  an  easy  to  handle  possibility  to  generate

comparable results in terms of count of tree. This modification was conducted in order to get the

most similar tree number between LiDAR and RGB and to be as close as possible to the visually

counted tree amount. In addition, a maximum crown diameter of 150 and a minimum tree height of

2 meters was selected if necessary. Several tests showed that a finer modification of settings can

result  in  more  detailed  matches,  but  for  the  purpose  of  investigating  how  reliable  selected

algorithms are when used on a RGB CHM, a fine tuning was rejected. 
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Validation

The CHMs and the RGB derived DSM were compared in terms of position and elevation. To verify

the position both CHMs were analysed and visually similar points were marked. The marked points

were overlayed to see the relative position to each other. Hereby a GPS shift was determined. To

focus on the segmentation process and not on the possibly UAV derived GPS errors this shift was

simply removed by moving the RGB CHM to fit the LiDAR CHM visually. Elevation differences

were examined by subtracting the RGB derived CHM from the LiDAR-derived CHM. Subsequent

the subtraction raster was classified in various difference ranges and the pixels of each class were

summed. 

In order to verify the TFA results between the RGB imagery approach and the LiDAR approach, an

adaption of the rsTree validation algorithm by C. Silva was used(Silva  et al., 2016). Hereby the

number of trees detected (NTD) per subplot from RGB imagery were compared with LiDAR-based

data and evaluated in  terms of  true  positive  (TP, correct  detection,  RGB LiDAR match),  false

negative (FN, omission error, only found in LiDAR) and false positive (FP, commission error, only

found in RGB). The accuracy of the detection was further evaluated for recall (r), precision (p) and

F-score  (F).  The  algorithm  originally  uses  two  variable  parameters,  the  maximum  euclidean

distance (MED) and the minimum height difference (MHD). The adapted version hereinafter is

named rsTreeA. The MED was adapted so that for each found tree in the RGB CHM, not the MED,

but the actual crown shape is used as a buffer around it, each representing a search window. All

LiDAR-derived trees located within this search window which have a height difference (HD) to the

RGB-based tree smaller than the MHD are selected. In this study a MHD of tree height / 10 meters

was chosen, so that for every 10th meter of tree height one meter of false estimation is allowed. If

more than one RGB based tree has HD ≤ MHD, the trees are ranked by HD and the tree with the

smallest HD is selected. 

Regarding their similarity, the crown shapes of the TPs with an overlap of at least 33% between

RGB crown and LiDAR crown were compared by the parameters length, width, calliper, area and

DBH and AGB. The former are simple shape parameters calculated with the uavRst implementation

of the Momocs package (Reudenbach, 2018b). The latter are calculated by the “agb” and “dbh”

function of the itcSegement package which are based on allometric models determined by a study

of Jucker et al. in 2017. The allometric bases on tree height and crown area and therefore are not

used  for  the  DSM  approach  because  there  the  tree  heights  are  not  suitable.  As  a  method  of

comparison, a Pearson Correlation was conducted between those parameters derived by the selected

RGB and LiDAR crowns. Results of insignificant correlations (significance level 0.05) were not

analysed. 
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Results

The results of each site are displayed and described in three figures per site. One for a CHM and

DSM compare, one with the findings for the CHM approach and one for the DSM approach.

The CHM validation results are presented in the first figure as a panel of four plots. Plot one and

two show the generated CHMs, three a RGB derived DSM raster and four a LiDAR CHM – RGB

CHM raster. Plot  three  is  able  to  show structural  similarities  between the  RGB DSM and the

LiDAR CHM. Plot four gives a good overview of LiDAR CHM and RGB CHM similarities and

deviations. 

The crown segmentation and tree finding results are shown in the second figure, in a comparison

panel containing all three algorithms. The first row shows all tree positions (TPs, FPs, FNs) and the

corresponding RGB image derived crown shapes within the plot (blue) and thereof the crowns,

which are suitable for a comparison (red). The second row shows the same tree positions but with

the  LiDAR-derived  crown  shapes.  Subsequently  follows  the  correlation  matrix  which  shows

correlation values between all chosen parameters with a significant p-value. The direct diagonal

comparison is of special interest because it offers a direct measurement of equality between selected

RGB crowns and LiDAR crowns. The last row consists of a data table giving an overview of the

different tree numbers, the results of the rsTreeA and the amount of compared crowns. 
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Site one

The generated CHMs of site one match relatively good as to see in Fig. 4. Main differences are to

find in the ground area pixel  caused by LiDARs capability  to  penetrate  the canopy. The DSM

raster shows structural similarities, but with a descending gradient from south-east to north-west.

The classified CHM-CHM subtraction image shows that 39.67 % of the pixels indicate a deviation

of -1.5 to 1.5 meters between RGB CHM and LiDAR CHM. 43.67 % of the pixel lay under -1.5

meters and 16.66 % above 1.5 meters (Fig. 4).
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Fig. 5: CHM approach panel site one



Crown segmentation  and  tree  finding  results  on  the  normalised  RGB CHM  of  site  one  show

rsTreeA F-Scores of: ITC 0.88; FT 0.87; rLiDAR 0.88 and a number of comparable crowns of: ITC

81.4%; FT 73.3591 rLiDAR 82.93%. Despite a good F-Score, the rLiDAR approach generated few

significant correlations which are mostly area related. The ITC and the FT algorithm on the other

hand show only a few insignificances. The correlations are mostly positive. Only the ITC algorithm

shows trees which are located close to each other but are not matched. This indicates a height

difference greater than the allowed MED (RGB tree height/  10).  All  other  FNs or FPs are not

matched due to different amounts of crowns and different shapes. It is observable that all three

approaches show susceptibility to errors in similar areas (Fig. 5).

In direct comparison to the results with an underlying DTM the F-Scores of the DSM approach for

site one (ITC 0.80; FT 0.76; rLiDAR 0.82), the number of comparable crowns (ITC 74.36%; FT

54.35%  rLiDAR  71.11%),  as  well  as  the  correlations  are  worse.  The  correlations  show  no

significance for the rLiDAR algorithm, only two direct significances (len:len; cal:cal) for the ITC

algorithm, and less than the half for the FT algorithm (again missing width:width). In addition, the

sole positive correlation values are still worse than the ones with a DTM. It is notable that again all

three show errors in similar areas, mainly due to the fact that the crowns shapes seem to be distorted

or do not exist in the RGB derived results. Especially on the eastern side, the LiDAR approach

produces more but smaller crowns (Fig. 6).
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Fig. 6: DSM approach panel site one



Site two

On the first  view, a  visual  comparison of  the CHMs and the RGB DSM of site  two indicates

structural similarities. Again the LiDAR CHM is able to show ground area while the RGB CHM

shows nearly no elevation pixel underneath a hight of 20 meters. The RGB CHM tends to be of

higher elevation in the upper left corner where coniferous are to find (Fig. 2) while the bottom right

corner  shows  lower  results.  The  RGB  DSM  has  structural  similarities  as  well  but  shows  an

ascending gradient from south-east to north-west in terms of elevation. In the classified CHM CHM

subtraction image 27.02% of the pixels lay between -1.5 to 1.5, while 67.8% of the pixels are below

-1.5 and thereby indicate a generally higher elevation of the RGB CHM (Fig. 7). 
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Fig. 8: CHM approach panel site two



In this case, the CSAs and TFAs generated the following results on the normalized RGB CHM of

site two. The rsTreeA validation detected F-Scores of: ITC 0.84; FT 0.88 rLiDAR 0.83 and thereby

percentages of comparable crowns of: ITC 78.05%; FT 78.57%; rLiDAR 74.36%. The correlation

results  of  the  ITC  and  ForestTools  algorithm  pair  show  sole  significant  results  with  positive

correlation values and notable worse results for the rLiDAR algorithm with fewer significances by

few positive correlations. Here again area related parameter and additionally the width parameter

show significances for the rLiDAR approach. One notable source of error is that the missing ground

areas in the RGB CHM lead to FPs where the LiDAR CHM shows ground area. Furthermore, the

rLiDAR CSA and the ForestTools CSA produce the same tree pair  in the north-western corner

which can not be matched due to Height difference problems. Again all other FNs and FPs occur

due to different amounts of crowns and different shapes. An overview over all three CSAs shows

difficulties in similar areas spread over the whole plot (Fig. 8). 

The CHM approach to DSM approach compare shows that a crown segmentation based on a RGB

DSM is able to detect nearly the same amount of TPs (ITC 33 to 33; ForestTools 37 to 33; rLiDAR

32 to 34) by only leading to relatively low percentages of comparable crowns: ITC 72.09%; FT

59.52%,  rLiDAR  69.77%.  Except  for  the  ForestTools  algorithm,  the  correlations  show  few

significant results, while area derived parameter tend to be significant. Significant correlations are

positive.  A visual  comparison  between  all  three  results  again  shows  similarities  in  term  of

problematic areas. Notable is that the bottom left area has many not matched trees, mainly due to

dissimilar crown shapes and amounts (Fig. 9).
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Fig. 9: DSM approach panel site two



The rsTreeA outcomes show good results for the CHM approach (mean F-Score: 0,86) and slightly

worse results for the DSM approach (mean F-Score: 0,81). One notable source of errors is the lack

of ground areas in the RGB CHM, due to which the minimal tree altitude of the algorithms cannot

be used properly and therefore the RGB approach produces trees where LiDAR detects ground area

(Fig. 8). It is observable, that the rsTreeA in some cases selects a crown as a usable crown on one

approach while a similar crown is not selected because it exceeds the plot limits a little bit too much

(Fig. 8 rLiDAR upper left corner). This could lead to a distortion of the results. Within the CHM

approaches, a few trees cannot be matched, although they are located next to each other because the

height difference is too big (Fig. 8 ForestTools upper right corner). All other unmatched trees can be

traced back to different amounts of crowns or different shapes produced by the algorithms. 

Main differences between the chosen CSAs are detectable in the correlation results. In all cases, the

ForestTools crowns show many significant correlations and mostly positive correlation values in all

four approaches. Similar results are produced by the ITC CSA, which shows few insignificances

and slightly better correlation values for the CHM approach but only a few significances on the

DTM approach. In the case of the rLiDAR algorithm, both approaches show very few significant

correlations and these nearly solely in area-based parameters (Fig. 5, Fig. 6, Fig. 8, Fig. 9).

A comparison between the percentages of compared crowns shows that the ITC findings are the

best on both DTM approaches (Fig. 6, Fig. 9), while ForestTools has the highest percentage in the

CHM approach for site two (Fig. 8) and rLiDAR for site one (Fig. 5).

A direct F-Score comparison between the CSAs shows that the rLiDAR values are the highest in

both DSM approaches (Fig. 6 Fig. 9) and one of the highest in one case (Fig. 5). The ForestTools

algorithm only has the highest score in the CHM approach on site two (Fig. 8) and the worst in all

other cases. The ITC approaches only share the highest score one time (Fig. 5), but in two cases the

findings are just slightly worse than the rLiDAR algorithm scores.  

Discussion

The results show that a RGB derived CHM creation is possible and moreover contains elevations

close to the LiDAR findings. However, the fact, that the RGB CHM does not show ground area

remains a significant disadvantage (Fig. 4, Fig. 7).

Overall  each TFA and CSA performed well  referring to the operability. The rsTreeA validation

outcomes show good results for the CHM approach (mean F-Score: 0,86)(Fig. 5, Fig. 8) and little

worse results for the DSM approach (mean F-Score: 0,81)(Fig. 6, Fig. 9). One source of errors is the

lack of ground areas in the RGB CHM, and the resulting malfunction of the minimal tree altitude
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parameter (Silva et al., 2018; Plowright, 2018; Dalponte, 2018a). As mentioned in the results other

errors are to find in the adapted rsTreeA itself.

Referring  to  the  crown  segmentation  validation  correlations  between  suitable  crowns  were

conducted based on different shape parameters. Despite the fact that the determined tree heights and

positions of all algorithms show similarly good rsTreeA validation results, the crown segmentation

results show notable differences. The rLiDAR algorithm leads to the worst overall results regarding

the correlations with few significant correlations and therefore should not be used for researches, as

long as other tested algorithms can be used instead.  Especially the ITC algorithm is a possible

alternative choice because it has a similar grade of generalisation. Additionally, it tries to generate

overlaps of crowns. 

Since rLiDAR shows best results for the DSM approaches, it certainly could be used for these. Due

to the fact that crown segmentation overall shows bad results on DSM, the approach, in general, is

questionable. Therefore the following discussions concentrate on the other two CSAs. 

A direct F-Score comparison between the ITC algorithm and the ForestTools algorithm, the latter is

worse in 3 of 4 cases even though the difference between the amount of RGB trees and LiDAR

trees is zero in all cases. Considering the fact that the search window of the ForestTools TFA is able

to be set  very precise (Plowright,  A. 2018, it  could be assumed that it  is set  too precisely and

accordingly generates forced results. This again leads to the assumption that the ITC algorithm

produces more reliable results because it produces better F-Scores without the risk of over tuning. 

Also, a comparison between the percentages of comparable crowns shows that the ITC findings are

better in 3 of 4 cases. In the CHM approach, the correlation results between both CSAs are similarly

satisfying.  

Regarding  their  shape,  the  ForestTools  findings  are  more  detailed,  and  the  ITC  shapes  are

generalized with the possibility to generate overlaps. In sum, it can be said that both approaches are

satisfying and should be used depending on the research field. 

During a testing of the used DTM algorithm, a susceptibility to low noise within the generated point

cloud was ascertainable, leading to the assumption that the point cloud creation and preprocessing

should be improved to ensure  that the DTMs are as correct as possible. In a case where it is not

possible  to  generate  a  proper  DTM, and the  DSM approach is  the only choice,  it  could  bring

improvement when the full  potential,  in terms of high resolution,  of the imagery is  used.  This

possibly leads to more suitable elevation structures within the DSM.

For this thesis aim, many algorithm parameters are not changed due to comparability reasons. It is

possible that a fine-tuning of parameter settings could lead to even better results. In order to test the

reliability of the chosen CSAs, no fine tuning was conducted. Gaining the mentioned results by just

changing the search window size to fit an visually counted amount of trees, allows the assumption
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that the CSAs can be transposed on RGB CHMs without risking irresponsible accuracy loss,

Referring to the results of this study it can be stated, that the RGB imagery derived CHMs are an

affordable and suitable alternative for crown segmentation processes, leading to estimations which

are comparable to LiDAR results. Further investigations with more fine tuning could encourage this

conclusion.  

Even though the results can compete with those of Mohan et al from 2017, at least in a LiDAR to

RGB comparison, some improvements could be made. Mainly the ground area problem should be

approached. Certainly, imagery will not be able to penetrate the canopy but one main advantage of

the high-resolution imagery, the RGB values, are unused in the chosen CSAs. It is conceivable that

RGB values could be used to improve crown segmentation itself or could be used to detect treeless

areas  in  the  CHM creation  process.  Certainly, the  rsTreeA algorithm could  be  improved.  One

conceivable idea would be to implement a weighted "distance to tree height difference" index. 

Due to the fact that the used methods are found to be reliable, usable with little expertise and most

importantly affordable, it is conceivable that the spectrum of users could increase over the coming

years, at least in disciplines and for problems where a very good estimation and no particularly high

accuracy  is  needed.  The  high  temporal  resolution  could  accelerate  decision  findings  in  forest

management, detect forest damages faster, describe seasonal growth behaviour etc. The capability

to fly underneath the crown cover could improve forest monitoring in cloudy and foggy areas. Of

course, this advantages can be reached by UAV derived LiDAR data as well, but not on a consumer

grade base and therefore only for few users. The low costs could lead to a more detailed forest

monitoring because even small managed areas can be monitored or even private areas. Hereby the

fact that the AGB, DBH and area parameter values show positive correlation values in all cases for

the CHM approach could allow further applications with more focus on the use of such parameters. 

Even if this is not the aim of this study it would be of high interest to expand the tests with a field-

based reference. In this study, it is assumed that the LiDAR findings are close to the reality because

it is a very established method and all used single steps proved their capability. It is to be mentioned

that  the  amount  of  visually  counted  trees  is  hard  to  validate  and  therefore  the  LiDAR search

window size  settings  cannot  be validated as  well.  A validation and/or  changing of  the LiDAR

findings is not of high importance in terms of the comparability but could lead to different and

probably better results for both, LiDAR and RGB imagery findings. Furthermore, this study should

be expanded by a larger number of more diverse study sites, ideally with a field-based reference to

validate the made findings of this study. In this study, this was not possible due to a lack of suitable

sites. Furthermore, the effect of the leaf status could be tested. Due to the fact that no exact date of

record  for  the  LiDAR  data  is  available,  it  is  possible  that  data  was  obtained  with  a  leaf-off

condition.  Even  if  Brandtberg  et  al.  (2003)  stated  that  a  leaf-off  condition  produces  sufficient
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segmentation results it is of interest which effect the leaf status has. It is conceivable that especially

the areas which are close to clearings with finer branches are harder to detect by LiDAR. This could

lead to smaller crowns or rather to more ground areas. In addition, the difference of 7 years between

the dates of record could have effects on the tree crowns. Due to the fact that most of the detected

trees are higher than 20 meters a timespan of 7 years should not produce too much difference in

terms of tree information. But it can be assumed that the results improve if the dates of record are in

the same season of the same year. 

Conclusion

In conclusion, this study shows that it is possible to generate RGB imagery derived CHMs which

can  lead  to  sufficient  tree  crown segmentation  results.  The  DSM  approach  leads  to  such  bad

correlations  results  that  it  is  to  say,  that  this  approach  is  not  suitable  for  further  studies.  All

compared CSAs can be conducted and are leading to usable results. The direct comparison indicates

that  the  rLiDAR algorithm pair  should not  be  the  first  choice,  while  the  ITC and ForestTools

approach compete with each other and should be selected depending on the research aim. 

Although the results are satisfying improvements can be made to gain even more accuracy and

reliability especially in terms of ground detection on the CHM approach.

To ensure that the found results describe realistic forest inventories a comparison with field-based

references and more study sites should be conducted. 
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